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Abstract Restricted Lie point symmetries are derived for the axially symmetric steady solutions to the ideal
magnetohydrodynamics equations. The symmetries transform vectors of magnetic field B and plasma velocity V
linearly with coefficients depending on a function u(z, r). A reduction of the eight MHD equilibrium equations to
a single second-order partial differential equation for the function u(z, r) is obtained. Analogous Lie point sym-
metries and reduction are derived for the translationally invariant MHD equilibria. Applications of the symmetry
transforms are indicated.
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1 Introduction

The study of the ideal magnetohydrodynamics (MHD) equilibrium equations has been going on during the last four
decades since their first applications to the problem of controlled thermonuclear fusion [1–4] and to problems in
astrophysics [5,6]. In this paper, we study the intrinsic symmetries of these equations which were introduced for
the first time in [7–9]. Intrinsic symmetries (or Bäcklund transforms) exist for all soliton equations [10–12], such
as the Korteweg–de Vries equation, the Kadomtzev–Petviashvili equation, the Sine–Gordon equation, etc. For the
soliton equations, the Bäcklund transforms are given implicitly and do not have explicit algebraic form.

We present the eight MHD equilibrium equations for the axially symmetric and translationally symmetric solu-
tions in an algebraic form in terms of Poisson brackets of different functions. Using this algebraic form, we derive
the restricted Lie point symmetries that are applicable to the physically meaningful MHD equilibria with bounded
total energy in any layer z1 < z < z2. Unlike the Bäcklund transforms for the soliton equations, the new symmetries
are given explicitly. The symmetries transform the vectors of plasma velocity V and magnetic field B by linear
formulae with variable coefficients and preserve the axial and translational invariance of the MHD equilibria.

The symmetries differ from the general symmetry transforms introduced in [7–9]. The latter are applicable to any
MHD equilibria and can break the geometrical symmetry of solutions. Using the known properties of the Poisson
brackets, we show that eight MHD equations are reduced to a single second-order partial differential equation for
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142 O. Bogoyavlenskij

a function u(z, r). For the axially symmetric case, the equation contains three arbitrary functions and generalizes
the Grad–Shafranov equation [3,4] for purely magnetic plasma equilibria.

2 Restricted Lie point symmetries for axially symmetric MHD equilibria

2.1 Lie point symmetries in exact form

Equations of ideal magnetohydrodynamics have the form [13, Chap. 1]

∂V
∂t

= V × curl V − 1

µρ
B × curl B − grad

(
p

ρ
+ V2

2

)
, (2.1)

div V = 0,
∂B
∂t

= curl(V × B), div B = 0, (2.2)

where B is the magnetic vector field, V is plasma velocity vector field and p denotes plasma pressure; we assume
that magnetic permeability µ and plasma density ρ are constant. First we study axially symmetric solutions which
depend on three variables t, z, r in the cylindrical coordinates t, z, r, ϕ. Any axially symmetric vector field U has
the form

U = X (t, z, r)

r
ez + Y (t, z, r)

r
er + f (t, z, r)

r
eϕ

where ez , er and eϕ are unit orts in the directions of variables z, r and ϕ, respectively. The incompressibility equation
div U = 0 has the form ∂X/∂z + ∂Y/∂r = 0. Hence the vector fields V and B satisfying equations div V = 0 and
div B = 0 have the form

V = −vr

r
ez + vz

r
er + f

r
eϕ, B = −hr

r
ez + hz

r
er + g

r
eϕ, (2.3)

where v(t, z, r), f (t, z, r), h(t, z, r) and g(t, z, r) are some smooth functions. The vector field V has the form

V =
( x

r2 vz − y

r2 f
)

ex +
( y

r2 vz + x

r2 f
)

ey − vr

r
ez

in the Cartesian coordinates x, y, z with unit orts ex , ey , ez . Hence we get V2 = ((vz)
2 + (vr )

2 + f 2)/r2.
The vorticity vector fields curl V and curl B are

curl V = fr

r
ez − fz

r
er + r�eϕ, curl B = gr

r
ez − gz

r
er + r�eϕ,

where

� = 1

r2

∂2v

∂z2 + 1

r

∂

∂r

(
1

r

∂v

∂r

)
, � = 1

r2

∂2h

∂z2 + 1

r

∂

∂r

(
1

r

∂h

∂r

)
. (2.4)

We will use the notion of the Poisson bracket {F,G} = FzGr − Fr Gz of two functions F(t, z, r) and G(t, z, r)
and the main identities

{F,G} = −{G, F}, {F, f (u)} = f ′(u){F, u},
{FG, H} = F{G, H} + G{F, H}.
The z−, r−, and ϕ-components of Eq. 2.1 have the form

1

r
vtr + 1

2r2 Dz +�vz − 1

µρ
�hz = P z, (2.5)

−1

r
vt z + 1

2r2 Dr +�vr − 1

µρ
�hr = Pr , (2.6)

ft = 1

r

(
{ f, v} − 1

µρ
{g, h}

)
, (2.7)
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Restricted Lie point symmetries and reductions for ideal magnetohydrodynamics equilibria 143

where D = f 2 − g2/µρ and P = p/ρ + V2/2. The compatibility condition for (2.5) and (2.6) is

�t = 1

r

(
{�, v} − 1

µρ
{�, h} +

{
1

2r2 , D

})
. (2.8)

The r−, z−, and ϕ-components of the second equation of (2.2) have the form

∂

∂z

(
ht − 1

r
{h, v}

)
= 0,

∂

∂r

(
ht − 1

r
{h, v}

)
= 0, (2.9)

gt = r({r−2g, v} − {r−2 f, h}). (2.10)

Equations 2.9 mean that ht − {h, v}/r = c(t). Solutions to (2.1)–(2.2) are unchanged after the substitution
h −→ h + c1(t) with dc1(t)/dt = c(t). Hence the equation set (2.9) is reduced to

ht = 1

r
{h, v}. (2.11)

The four equations (2.7), (2.8), (2.10) and (2.11) define completely solutions that depend on three variables
t, z, r .

Remark 1 For the time-independent solutions, Eq. 2.9 yields

1

r
{h, v} = K = const. (2.12)

Using Schwarz’ inequality and formulae (2.3), we find

|K | = |hzvr − hrvz |
r

≤
√
µρ

2r

(
v2

r + v2
z + h2

r + h2
z

µρ

)
≤ r

√
µρ

2

(
V 2 + B2

µρ

)
. (2.13)

Let us consider the physically meaningful MHD equilibria for which the total kinetic and magnetic energy of
plasma is finite in every axially symmetric layer z1 < z < z2:

1

2

z2∫
z1

dz
∫ ∞∫

−∞
(ρV2 + B2/µ)dxdy =

z2∫
z1

dz

∞∫
0

πr(ρV2 + B2/µ)dr < const. (2.14)

Hence we get that at least for some sequence of r −→ ∞
r(V2 + B2/µρ) −→ 0.

Therefore the inequalities (2.13) imply that for physically meaningful MHD equilibria necessarily K = 0. Hence
we get from (2.12) the equation

{h, v} = 0 (2.15)

for the considered MHD solutions.

Remark 2 The equation {h, v} = hzvr − hrvz = 0 means that the Jacobian of the mapping

(z, r) −→ (h(z, r), v(z, r))

is identically equal to zero. Hence the image of this mapping is a curve � in the plane (h, v) and the stream function
v(z, r) and the flux function h(z, r) are functionally dependent. Therefore v = v(u), h = h(u), where u = u(z, r)
is an unknown function. Let the curve � satisfies an equation such as

S(h, v) = 0. (2.16)

Thus, the space of all solutions to the steady equations (2.1)–(2.2) is mapped into a much smaller space of plane
curves (2.16). This means that the curve � defined by (2.16) is a geometric invariant of any magnetohydrodynamics
equilibrium configuration. Any two distinct curves (2.16) correspond to different solutions to (2.1)–(2.2).
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Theorem 1 The steady equations of magnetohydrodynamics have the following Lie point symmetry applicable to
the axially symmetric equilibria satisfying the physical condition (2.14). Let vector fields V(z, r) and B(z, r) (2.3)
and pressure p(z, r) satisfy the steady equations (2.1)–(2.2). Let v1(u) and h1(u) be arbitrary smooth functions
satisfying the equation

v′2
1 (u)− 1

µρ
h′2

1 (u) = C

(
v′2(u)− 1

µρ
h′2(u)

)
, (2.17)

where C �= 0 is an arbitrary constant. The symmetry transforms solution V(z, r), B(z, r), p(z, r) into the new
solution

V1 = v′
1

v′ V + v′
1h′ − v′h′

1

mµρrv′ (h′ f − v′g)eϕ,

B1 = h′
1

h′ B − v′
1h′ − v′h′

1

mrh′ (h′ f − v′g)eϕ, (2.18)

p1 = Cp + ρ

2
(CV2 − V2

1),

where m = v′2(u)− h′2(u)/µρ.

Proof Indeed, Eqs. (2.7)–(2.10), (2.15) for the steady case take the form

{h, v} = 0, {�, v} − 1

µρ
{�, h} +

{
1

2r2 , f 2 − 1

µρ
g2

}
= 0, (2.19)

{ f, v} − 1

µρ
{g, h} = 0, {r−2g, v} − {r−2 f, h} = 0. (2.20)

Suppose that (2.16) is resolved in a parametric form h = h(u), v = v(u) where u = u(z, r). Then the second
equation of (2.19) takes the form
(
v′2 − 1

µρ
h′2

) {
1

r2

∂2u

∂z2 + 1

r

∂

∂r

(
1

r

∂u

∂r

)
, u

}
+

(
v′v′′ − 1

µρ
h′h′′

) {
1

r2

(
∂u

∂z

)2

+ 1

r2

(
∂u

∂r

)2

, u

}

+
{

1

2r2 , f 2 − 1

µρ
g2

}
= 0. (2.21)

Let us consider (2.19)–(2.20) for another four functions v1(u), h1(u), f1(z, r), g1(z, r) instead of the functions
v(u), h(u), f (z, r) and g(z, r). The second equation of (2.19) for them has the form
(
v′2

1 − 1

µρ
h′2

1

) {
1

r2

∂2u

∂z2 + 1

r

∂

∂r

(
1

r

∂u

∂r

)
, u

}
+

(
v′

1v
′′
1 − 1

µρ
h′

1h′′
1

){
1

r2

(
∂u

∂z

)2

+ 1

r2

(
∂u

∂r

)2

, u

}

+
{

1

2r2 , f 2
1 − 1

µρ
g2

1

}
= 0.

This equation is equivalent to (2.21) if the functions v1(u), h1(u) satisfy (2.17) and the functions f1(z, r), g1(z, r)
satisfy

f 2
1 − 1

µρ
g2

1 = C

(
f 2 − 1

µρ
g2

)
. (2.22)

Equations (2.20) for the functions v1, h1, f1, g1 take the form{
v′

1 f1 − 1

µρ
h′

1g1, u

}
= 0,

{
r−2(v′

1g1 − h′
1 f1), u

}
= 0. (2.23)

Equations (2.23) are equivalent to the original equations (2.20) if

v′
1 f1 − 1

µρ
h′

1g1 = C

(
v′ f − 1

µρ
h′g

)
, v′

1g1 − h′
1 f1 = C

(
v′g − h′ f

)
. (2.24)
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Solving (2.24), we obtain

f1 = C

m1

((
v′v′

1 − 1

µρ
h′h′

1

)
f + 1

µρ

(
v′h′

1 − h′v′
1

)
g

)
,

g1 = C

m1

((
v′h′

1 − h′v′
1

)
f +

(
v′v′

1 − 1

µρ
h′h′

1

)
g

)
,

(2.25)

where m1 = v′2
1 − h′2

1 /µρ. A direct verification proves that the functions f1, g1 (2.25) do satisfy (2.22) if (2.17)
holds.

For any given steady solution V(z, r), B(z, r), the obtained results prove the following. If one changes in formu-
lae (2.3) the functions v(u), h(u), f (z, r), g(z, r) to new functions v1(u), h1(u), f1(z, r), g1(z, r) satisfying (2.17)
and (2.25), then the new vector fields V1(z, r), B1(z, r) form a solution to (2.1), (2.2). This transformation has the
exact form (2.18) and defines a symmetry transform for the steady equations (2.1)–(2.2), (2.15).

To derive formula (2.18) for the pressure p1(z, r), we consider the steady equations (2.5), (2.6) for the new
functions v1(u), h1(u), f1(z, r), g1(z, r). Using formulae (2.4), (2.17) and (2.22), we find P1 = CP:

p1

ρ
+ V 2

1

2
= C

(
p

ρ
+ V 2

2

)
.

Hence formula (2.18) for the pressure p1(z, r) follows. ��
Remark 3 The symmetry transforms (2.18) have efficient applications. Indeed, to obtain large families of exact
axially symmetric MHD equilibria it is sufficient to apply the symmetries (2.18) to the exact plasma equilibria
derived in [14,15].

2.2 Algebraic properties of symmetries

Using (2.3) and (2.15), which means v = v(u), h = h(u), we find

h′V − v′B = 1

r
(h′ f − v′g)eϕ. (2.26)

Excluding vector eϕ from (2.26) and inserting it into (2.18), we obtain the following formulae for the symmetry
transform

V1 = 1

m

((
v′v′

1 − 1

µρ
h′h′

1

)
V + 1

µρ

(
v′h′

1 − h′v′
1

)
B

)
,

B1 = 1

m

((
v′h′

1 − h′v′
1

)
V +

(
v′v′

1 − 1

µρ
h′h′

1

)
B

)
.

(2.27)

It is evident that transform (2.27) is linear with respect to vectors V and B. Using the equation m1 = Cm (2.17)
where m1 = v′2

1 − h′2
1 /µρ, we see that linear transform (2.27) coincides with that of equations (2.25).

A direct calculation shows that a combination of transform (2.27) and the transform

V2 = 1

m1

((
v′

1v
′
2 − 1

µρ
h′

1h′
2

)
V1 + 1

µρ

(
v′

1h′
2 − h′

1v
′
2

)
B1

)
,

B2 = 1

m1

((
v′

1h′
2 − h′

1v
′
2

)
V1 +

(
v′

1v
′
2 − 1

µρ
h′

1h′
2

)
B1

) (2.28)

gives

V2 = 1
m

((
v′v′

2 − 1
µρ

h′h′
2

)
V + 1

µρ

(
v′h′

2 − h′v′
2

)
B

)
,

B2 = 1
m

((
v′h′

2 − h′v′
2

)
V +

(
v′v′

2 − 1
µρ

h′h′
2

)
B

)
.

(2.29)

It is evident that the resulting transform (2.29) has the same form as (2.27).
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Remark 4 The transforms (2.27) are parameterized by the mappings of curves the � (2.16) in the Minkowski plane
R2 with metric ds2 = dv2 − dh2/µρ:

(v(u), h(u)) −→ (v1(u), h1(u))

satisfying (2.17). The transforms do not form a Lie group because their product is not defined for any two mappings
but only if they have the form (v(u), h(u)) −→ (v1(u), h1(u)) and (v1(u), h1(u)) −→ (v2(u), h2(u)). The unit
transform is represented by the identity map (v(u), h(u)) −→ (v(u), h(u)); the inverse transform is represented
by the mapping (v1(u), h1(u)) −→ (v(u), h(u)). The associativity of multiplication (when it is defined) follows
from the composition formula (2.29).

Formulae (2.27) and m1 = Cm (2.16) yield the following equation

V2
1 − 1

µρ
B2

1 = C

(
V2 − 1

µρ
B2

)
. (2.30)

Remark 5 The linear transformation (2.27) has the form

V1 = a(u)V + b(u)√
µρ

B, B1 = b(u)
√
µρ V + a(u)B, (2.31)

a(u) = v′v′
1 − h′h′

1

v′2 − h′2/µρ
, b(u) = v′h′

1 − h′v′
1√

µρ(v′2 − h′2/µρ)
.

In view of Eq. 2.17, the determinant of the transform (2.31) is constant:

a2(u)− b2(u) = C = const. (2.32)

Formulae (2.31) and (2.32) look the same as for the general symmetry transforms introduced in [8,9]. However,
there is an important distinction: the symmetry transforms of [8,9] have coefficients a(x) and b(x) that are constant
on magnetic surfaces but depend upon the transversal variable. Hence they do not preserve the axial symmetry
of solutions since magnetic surfaces (tangent to the commuting vector fields V and B) for the axially symmetric
MHD equilibria are not axially symmetric in general. The symmetry transforms [8,9] are applicable to all MHD
equilibria without any restrictions. For the transforms (2.27)–(2.31), the coefficients a(u) and b(u) depend on a
function u(z, r) and hence they are not constant on magnetic surfaces. The transforms (2.27)–(2.31) do preserve
the axial symmetry of MHD equilibria and are applicable only under the restriction (2.14), (2.15).

2.3 Connections with Minkowski geometry

Let the functions v1(u) and h1(u) satisfy an equation of the kind

S1(h1, v1) = 0. (2.33)

It is evident that (2.17) for C = 1 means that two curves � (2.16) and �1 (2.33) are isometric with respect to the
Minkowski metric

ds2 = dv2 − 1

µρ
dh2

on the plane v, h.
For the Minkowski metric, the classes of non-isometric curves are much richer then those for the Euclidean

metric where there is only one invariant, namely the length of the curve. Let p1, p2, . . . , pn, . . . be successive
points where a curve � is tangent to the light cone and �1, �2, . . . , �n, . . . be the Minkowski-lengths of the curve �
segments between those points:

�i = εi

pi∫
pi−1

∣∣∣∣dv2 − 1

µρ
dh2

∣∣∣∣
1/2

.

Here εi = sign(ds2)|� on the segment (pi−1, pi ). Two curves � and �1 are Minkowski-isometric if their two
respective sequences �1, �2, . . . , �n, . . . coincide.
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Restricted Lie point symmetries and reductions for ideal magnetohydrodynamics equilibria 147

3 Reduction of the steady MHD equations

Suppose that the equation set (2.15), (2.16) is resolved in a parametric form h = h(u), v = v(u). Then the equations
of (2.20) take the form{
v′(u) f − 1

µρ
h′(u)g, u

}
= 0, {r−2(h′(u) f − v′(u)g), u} = 0.

These equations imply

v′(u) f − 1

µρ
h′(u)g = k(u), h′(u) f − v′(u)g = −r2�(u), (3.1)

where k(u) and �(u) are some functions. Solving Eq. 3.1, we obtain

f = v′(u)k(u)+ r2

µρ
h′(u)�(u)

m(u)
, g = r2v′(u)�(u)+ h′(u)k(u)

m(u)
, (3.2)

where m(u) = (v′(u))2 − (h′(u))2/µρ.
The formulae (3.2) imply that function D = f 2 − g2/µρ has the form

D = λ(u)− r4ψ(u), λ(u) = k2(u)

m(u)
, ψ(u) = �2(u)

µρm(u)
. (3.3)

Using these formulae, we transform the second equation of (2.19) to the form {Z , u} = 0, where

Z = v′(u)�− h′(u)
µρ

� + λ′(u)
2r2 + r2ψ ′(u)

2
. (3.4)

Hence we conclude as above that Z = η(u), where the function η(u) can be multivalued in general.
Applying formulae (2.4), we obtain the explicit form of the equation Z = η(u):(
v′2 − 1

µρ
h′2

)(
1

r2

∂2u

∂z2 + 1

r

∂

∂r

(
1

r

∂u

∂r

))
+

(
v′v′′ − 1

µρ
h′h′′

) (
1

r2

(
∂u

∂z

)2

+ 1

r2

(
∂u

∂r

)2
)

= η(u)− 1

2r2 λ
′(u)− r2

2
ψ ′(u). (3.5)

On any segment of the curve � (2.16) between two adjacent points u j and u j+1 where m(u�) = 0, we introduce
a new parametrization satisfying the condition

(v′(u))2 − 1

µρ
(h′(u))2 = β, (3.6)

where β = const. The condition (3.6) reduces (3.5) to the form

1

r2

∂2u

∂z2 + 1

r

∂

∂r

(
1

r

∂u

∂r

)
= η(u)

β
− 1

2βr2 λ
′(u)− r2

2β
ψ ′(u). (3.7)

Equation (3.7) generalizes the Grad–Shafranov equation [3,4] for purely magnetic plasma equilibria with V = 0.
For the Grad–Shafranov equation we have f = 0, v(u) = �(u) = ψ(u) = 0. In the coordinates z, x = r2/4,
Eq. 3.7 takes the form

uzz + xuxx = a(u)+ xb(u)+ x2c(u), (3.8)

where

a(u) = − (k
2(u))′

2β2 , b(u) = 4η(u)

β
, c(u) = −8(�2(u))′

µρβ2 .

Any solution to (3.8) defines a solution to the magnetohydrodynamics equations (2.1)–(2.2) by the formulae

V = −v
′ur

r
ez + v′uz

r
er + f

r
eϕ, (3.9)

B = −h′ur

r
ez + h′uz

r
er + g

r
eϕ, (3.10)
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148 O. Bogoyavlenskij

where functions v(u) and h(u) satisfy (3.6) and

f = 1

β

(
v′k + r2

µρ
h′�

)
, g = 1

β

(
r2v′�+ h′k

)
.

To derive a formula for the pressure p(z, r), we consider the steady equations (2.5) and (2.6). Using the formulae
(3.3) D = λ(u)− r4ψ(u) and (3.4) Z = η(u), we transform (2.5) and (2.6) to the form

η(u)uz − (r2ψ(u))z = Pz, η(u)ur − (r2ψ(u))r = Pr ,

which is equivalent to P = F(u) − r2ψ(u) where P = p/ρ + V 2/2 and F ′(u) = η(u) = βb(u)/4. Hence we
obtain the following formula for the pressure p:

p = ρF(u)− r2�2

µβ
− ρ

2r2 ( f 2 + v′2((uz)
2 + (ur )

2)). (3.11)

A direct substitution of formulae (3.9)–(3.11) in the steady magnetohydrodynamics equations (2.1)–(2.2) proves
that these eight equations for the axially symmetric solutions are reduced to the single equation (3.8) provided that
condition (3.6) holds.

4 Restricted Lie point symmetries and reduction for translationally invariant MHD equilibria

4.1 Explicit formulae for the Lie point symmetries

Let us consider the z-independent (or translationally invariant) solutions to equations of ideal magnetohydrody-
namics in the Cartesian coordinates t, x, y, z. First we study solutions which depend on three variables t, x, y. The
incompressibility equations div V = 0 and div B = 0 imply that the vector fields V and B have the form

V = −vyex + vx ey + f ez, B = −hyex + hx ey + gez, (4.1)

where v(t, x, y), f (t, x, y), h(t, x, y) and g(t, x, y) are some smooth functions. The corresponding vorticity
vector fields are

curl V = fyex − fx ey +�ez, curl B = gyex − gx ey +�ez,

where

� = vxx + vyy, � = hxx + hyy . (4.2)

We will use the notion of the Poisson bracket {F,G} = Fx G y − FyGx of two functions F(t, x, y) and G(t, x, y).
The x-, y-, and z-components of (2.1) have the form

vt y + 1

2
Dx +�vx − 1

µρ
�hx = Px , (4.3)

−vt x + 1

2
Dy +�vy − 1

µρ
�hy = Py, (4.4)

ft = { f, v} − 1

µρ
{g, h}, (4.5)

where D = f 2 − g2/µρ and P = p/ρ + V2/2. The compatibility condition for (4.3) and (4.4) is

�t = {�, v} − 1

µρ
{�, h}. (4.6)

The x-, y-, and z-components of the second equation of (2.2) have the form

∂

∂y
(ht − {h, v}) = 0,

∂

∂x
(ht − {h, v}) = 0, (4.7)

gt = {g, v} − { f, h}. (4.8)
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The equations of (4.7) mean that ht − {h, v} = c(t). The solutions to (2.1)–(2.2) are unchanged after the
substitution h −→ h + c(t) with dc1(t)/dt = c(t). Hence (4.7) is reduced to

ht = {h, v}. (4.9)

Equations (4.6), (4.9) form a closed subsystem that has the form

�vt = {�v, v} − 1

µρ
{�h, h}, ht = {h, v},

where� = ∂2/∂x2 + ∂2/∂y2. The four equations (4.5), (4.6),(4.8) and (4.9) define completely the solutions which
depend on the three variables t, x, y.

Remark 6 For time-independent solutions, Eq. (4.7) implies

{h, v} = K = const.

Using formulae (4.1) and Schwarz’ inequality, we find

|K | = |hxvy − hyvx | ≤
√
µρ

2

(
v2

x + v2
y + h2

x + h2
y

µρ

)
≤

√
µρ

2
(V2 + B2/µρ). (4.10)

We consider below only physically meaningful MHD equilibria for which the total kinetic and magnetic energy
in every layer z1 < z < z2 is finite:

1

2

z2∫
z1

dz
∫ ∞∫

−∞
(ρV2 + B2/µ)dxdy < const. (4.11)

Hence we find that at least for some sequence of x, y −→ ∞ we have

V2 + B2/µρ −→ 0.

Therefore the inequalities (4.10) yield that for the physically meaningful MHD equilibria K = 0. Hence the
equation

{h, v} = 0 (4.12)

holds. In view of (4.12), the stream function v(x, y) and the flux function h(x, y) are functionally dependent and
hence v = v(u), h = h(u), where u = u(x, y) is a smooth function.

Theorem 2 The steady equations of magnetohydrodynamics have the following Lie point symmetry applicable to
the translationally invariant equilibria satisfying physical condition (4.11). Let vector fields V(x, y) and B(x, y)
(4.1) and pressure p(x, y) satisfy the steady equations (2.1)–(2.2). Let v1(u) and h1(u) be arbitrary smooth functions
satisfying (2.17). The symmetry transforms the solution V(x, y), B(x, y), p(x, y) into the new solution

V1 = v′
1
v′ V +

(
f1 − v′

1
v′ f

)
ez, B1 = h′

1
h′ B +

(
g1 − h′

1
h′ g

)
ez,

p1 = Cp + ρ
2 (CV2 − V2

1)− ρ
2 (C f 2 − f 2

1 )+ 1
2µ(Cg2 − g2

1),
(4.13)

where f1(u) and g1(u) are arbitrary functions of u.

Proof Indeed, Eqs. (4.5)–(4.8), (4.12) for the steady case take the form

{h, v} = 0, {�, v} − 1

µρ
{�, h} = 0, (4.14)

{ f, v} − 1

µρ
{g, h} = 0, {g, v} − { f, h} = 0. (4.15)

The equation {h, v} = hxvy −hyvx = 0 means that the mapping (x, y) −→ (h(x, y), v(x, y)) has zero Jacobian.
Hence its image is a curve �1 in the plane (h, v). Let this curve satisfy an equation such as (2.16). We suppose that
(2.16) is resolved in parametric form h = h(u), v = v(u) where h(u) and v(u) are functions of one variable u, and
u = u(x, y) is a function of two variables x and y.
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The second equation of (4.14) has the form
(
v′2 − 1

µρ
h′2

) {
uxx + uyy, u

} +
(
v′v′′ − 1

µρ
h′h′′

) {
(ux )

2 + (uy)
2, u

}
= 0. (4.16)

Let us consider another set of functions v1 = v1(u), h1 = h1(u) instead of the functions v(u), h(u). It is evident
that the corresponding equation (4.16) is equivalent to the original equation (4.16) if the functions v1(u) and h1(u)
satisfy (2.17).

After substituting v = v(u), h = h(u), Eq. (4.15) takes the form

{v′(u) f − 1

µρ
h′(u)g, u} = 0, {h′(u) f − v′(u)g, u} = 0.

These two equations imply f = f (u), g = g(u) with arbitrary functions f (u) and g(u), provided that m(u) =
(v′(u))2 − (h′(u))2/µρ �= 0.

Hence we obtain that, if functions v(u), h(u), f (u), g(u) in a steady solution V(x, y), B(x, y) (4.1) are changed to
functions v1(u), h1(u) and arbitrary functions f1(u), g1(u), then the corresponding vector fields V1(x, y), B1(x, y)
(4.1) form a new solution to the magnetohydrodynamics equations (2.1), (2.2) provided that (2.17) holds. This
transformation has the exact form (4.13) and constitutes the Lie point symmetry for the steady equations (2.1)–
(2.2).

To derive formula (4.13) for the pressure p1(x, y), we consider the steady equations (4.3), (4.4). A direct cal-
culation using the formulae (4.2) proves that, if functions v(u) and h(u) are changed to the functions v1(u), h1(u)
satisfying (2.17), then P1 − D1/2 = C(P − D/2). Hence formula (4.13) for the pressure p1(x, y) follows. �

Remark 7 Equations (4.1) and (4.12) imply

h′V − v′ B = (h′ f − v′g)ez .

Excluding the vector ez , we find that transform (4.13) also has the form

V1 = 1

k
(h′ f1 − v′

1g)V + 1

k
(v′

1 f − v′ f1)B, (4.17)

B1 = 1

k
(h′g1 − h′

1g)V + 1

k
(h′

1 f − v′g1)B,

where k = h′ f −v′g. Transform (4.17) is evidently linear with respect to the vectors V and B. Its coefficients depend
on the function u(x, y) and therefore are not constant on magnetic surfaces. Hence the transform (4.13)–(4.17) is
different from the general symmetry transforms for the MHD equilibria [8,9] where coefficients are constant on
magnetic surfaces. Since the magnetic surfaces are not translationally invariant in general, the symmetry transforms
of [8,9] break the translational invariance of the MHD equilibria. Transforms (4.13)–(4.17) do preserve translational
invariance. Note that the determinant of transform (4.17) is not constant since it is equal to

h′
1(u) f1(u)− v′

1(u)g1(u)

h′(u) f (u)− v′(u)g(u)
,

where f1(u), g1(u), f (u) and g(u) are arbitrary functions of function u(x, y). For the symmetry transforms of
[8,9], the corresponding determinant is constant, as well as the determinant (2.32) for the transforms (2.31) for the
axially symmetric equilibria.

4.2 Reduction to the Klein–Gordon equation

The second equation of (4.14) has the form{
v′(u)�− 1

µρ
h′(u)�, u

}
= 0.
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As above, this equation implies

v′(u)�− 1

µρ
h′(u)� = a0(u), (4.18)

where a0(u) is an arbitrary function. Substituting formulae (4.2), we derive the equation(
v′2 − 1

µρ
h′2

) (
uxx + uyy

) +
(
v′v′′ − 1

µρ
h′h′′

) (
(ux )

2 + (uy)
2
)

= a0(u). (4.19)

Let S j be a segment of the curve �1 (2.16) between two adjacent points u j and u j+1 where m(u�) = 0. We
choose a new parametrization on S j satisfying condition (3.6). Under this condition, Eq. (4.19) is reduced to the
Klein–Gordon equation

uxx + uyy = a(u), (4.20)

where a(u) = a0(u)/β is an arbitrary function. Equation (4.20) is well-known in the theory of equilibria of an ideal
incompressible fluid. It describes also purely magnetic plasma equilibria with V = 0.

Any solution to (4.20) defines a solution to the magnetohydrodynamics equations by the formulae

V = −v′(u)uyex + v′(u)ux ey + f (u)ez,

B = −h′(u)uyex + h′(u)ux ey + g(u)ez,
(4.21)

where f (u) and g(u) are arbitrary functions and equation (v′(u))2 − (h′(u))2/µρ = β (3.6) holds.
Using formula (4.18), we transform the steady equations (4.3), (4.4) to the form

a0(u)ux = (P − D/2)x , a0(u)uy = (P − D/2)y,

where P = p/ρ + V2/2 and D = f 2(u)− g2(u)/µρ. Hence we obtain a formula for the pressure p(x, y):

p

ρ
= F(u)− g2(u)

2µρ
− (v′(u))2

2

(
(ux )

2 + (uy)
2
)
, (4.22)

where F ′(u) = βa(u).
A direct substitution of formulae (4.21)–(4.22) in the magnetohydrodynamics equations (2.1)–(2.2) proves that

these eight equations for the steady and z-independent case are reduced to the single equation (4.20) provided that
condition (3.6) holds.

5 Conclusion

For axially symmetric MHD equilibria, we have derived the restricted Lie point symmetries (2.18), (2.27) which
depend on arbitrary functions v1(u) and h1(u) satisfying (2.17) with an arbitrary parameter C . The symmetries
are applicable to the physically meaningful MHD equilibria with bounded total energy in any layer z1 < z < z2;
see (2.14) and (4.11). For translationally invariant MHD equilibria, the restricted Lie point symmetries have the
form (4.13), (4.17). Applying the symmetries (2.18), (2.27) to the exact plasma equilibria presented in [14,15],
one obtains large families of exact axially symmetric MHD equilibria. We have derived a reduction of eight MHD
equilibrium equations to a single second-order partial differential equation (3.8) for the axially symmetric solutions
and Eq. 4.20 for the translationally invariant ones.

For the future development in the field it would be useful to find the restricted Lie point symmetries for helically
symmetric MHD equilibria and the corresponding reduction of the MHD equilibrium equations to a single partial
differential equation of second order.

The restricted Lie point symmetries derived in this paper are different from the general symmetry transforms
introduced in [7–9]. The latter are applicable to any MHD equilibria and have coefficients that are constant on
magnetic surfaces but depend on a transversal variable and therefore can break the geometric symmetry (axial,
translational or helical) of the equilibria. The transforms (2.18), (2.27) and (4.13), (4.17) preserve the geometric
symmetry of the MHD equilibria.
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